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Spoken Language Assessment



Whisper

• 680,000 hours of web data

• Multitask training:
• multilingual ASR
• speech translation
• language identification
• voice activity detection

• Different sizes:
• tiny – 39M
• base – 74M
• small – 244M
• medium – 769M
• large – 1550M



Speech Recognition with Whisper



WER Results on Linguaskill test set

• Kaldi-based system 
• Acoustic model and language model: trained on 400+ hours of 

Linguaskill data

• Whisper outputs contain more deletion errors
• L2 English learners have a lot of disfluencies and hesitations/fillers



Problems of Whisper outputs

• The output is human readable, i.e. punctuation is added, numbers are 
presented in Arabic numeric format, and disfluencies are skipped.

• Typical ASR error types made by Whisper: 1) abbreviation in red; 2) 
disfluency (false start and repetition) in blue; 3) hesitation in pink; 4) 
number in cyan and 5) partial word in orange.



Text Normalisation Rules

• Symbols like currency units and mathematical notations: converted

• Ordinal numbers: converted

• Punctuation: removed or replaced by space

• Abbreviation: mapped

• Combination of numbers and letters: converted case by case

• US/UK spelling difference: converted

• ……



WER Results After Text Normalisation

• Cannot recover the skipped hesitations or disfluencies

• Ambiguity: $20 à “twenty dollar” or “twenty dollars” ?



WER Results without Hesitation

• Better performance than Kaldi-based system in zero-shot evaluation!



Task Adaptation: Fine-tuning

• Update all model parameters based on the task-specific training set



Task Adaptation: Prompting

• Operate in the model input, task specified in natural language

• Human readable, but requires human expertise in prompt designing



Task Adaptation: Soft Prompt Tuning

• Insert 20 trainable vectors in the decoder embedding space

• Optimised via gradient descent

• Parameter efficient compared to fine-tuning (only 0.0006% parameters)



Dataset for Whisper Adaptation

• Train/test data annotated by ELiT (LIESTdev01/2/3)
• Complete responses with no unknown or foreign words

• Train: mix of Linguaskill General and Business Speaking

• Test: Linguaskill Business



ASR Results of Whisper Adaptation

• Fine-tuned Whisper performs the best (43% WERR to Kaldi)
• Soft-prompt tuning only slightly worse

• Large reduction in deletions with adapted Whisper
• suitable to display to learners in Speech and Improve



Case Analysis



Analysis on Word Counts



Dataset for Spoken Language Assessment

• Both train and test sets are from Linguaskill Business Speaking

• Training data different from that used in adaptation

• Transcriptions from underlying ASR system: Kaldi or Whisper-FT



Grader Performance

• DDN feature-based grader
• 24 feature subset used for these preliminary experiments

• Whisper-FT shows improvement on all metrics!
• Significant reduction in WER
• Small gains in auto-marking due to approach of mitigating effect of 

ASR errors by training on ASR transcriptions



Predicted vs Reference Scores

• Whisper-FT a little more consistent

Kaldi Whisper-FT



Offset Predicted vs Reference Scores

• Whisper-FT more within desired bounds, especially for lowest scores
• Whisper-FT slightly more offset on highest scores

Kaldi Whisper-FT



SLA Conclusions

• Standard Whisper deletes parts of L2 learners’ speaking transcript

• Fine-tuning and soft prompt tuning can be used to address the issue

• After fine-tuning on 17h Linguaskill training set, we can achieve 43% 
WERR compared to a 400h trained Kaldi-based system

• Grader shows performance gain on Linguaskill Business test set



Feedback for Spoken Grammatical Error Correction



Spoken GEC



Disfluency Detection (DD)

• Pre-trained language model: 
BERT

• Capable of high-quality feature 
representations

• Fine-tune BERT for DD 
sequence tagging objective



Grammatical Error Correction (GEC)

• Pre-trained language model: BART

• Encoder-decoder architecture

• Treat spoken GEC as a sequence-
to-sequence task



Cascaded System Issues

• ASR errors can propagate in the pipeline

• Loss of information (intonation, speaker info, emotion, etc.)

• Training-evaluation mismatch



Whisper for Spoken GEC



Whisper for Spoken GEC



Whisper for Spoken GEC



Fine-tuning Whisper for Spoken GEC

• Proposal: Fine-tune Whisper on three training sets separately 
to generate ASR transcription in different formats



Data for spoken GEC



Model Setup

• DD (BERT):

• Stage 1 fine-tuning: Switchboard NXT

• Stage 2 fine-tuning: Linguaskill data

• GEC (BART):

• Stage 1 fine-tuning: EFCAMDAT+BEA-2019

• Stage 2 fine-tuning: Linguaskill

• Whisperdsf, Whisperflt, Whispergec:

• Fine-tuning: Linguaskill



Evaluation Metrics

• Standard metrics for DD/GEC challenging for spoken processing
• ASR errors mean that standard annotation not applicable

• Disfluency Detection (DD): 
• Standard Metric: F1 score on detecting disfluencies
• BUT ASR errors have no disfluency annotation
• Use WER to assess distance to manual text with disfluencies removed 

• Spoken Grammatical Error Correction (GEC):

• Standard Metric: F0.5 score on edits to correct manual text
• BUT ASR errors modify edits required to yield correct text
• Use WER/TER to assess word-level distance from GEC manual reference



WER of E2E Models based on Whisper

• Whisper models are trained on three tasks separately
• Matching training to task achieves best performance



Disfluency Detection Performance

• E2E approach performs better than a cascaded system

• Attention mechanism in Whisper is able to learn to skip words
• Whisperflt has learnt to skip disfluencies



Spoken GEC Performance

• Comparable performance compared to a fully cascaded system

• Whispergec has learnt to ”translate” to correct text
• Problem: lack of available training data



Feedback for Spoken Grammatical Error Correction

Grader Score: 3.5
Conf: 90%

Feedback 140

Speech 
Processing

Analytic – holistic feedback across all speech
Fine-grained – feedback on specific errors in words/phrases



Feedback Analysis for Spoken GEC



Feedback Analysis for DD

• Evaluate whether the deletions are accurate

• The cascaded system compares deletions based on a single 
transcription

• E2E systems compare outputs from two different decoding processes



Feedback Analysis for Spoken GEC

• Evaluate whether the edits are accurate

• Outputs from the cascaded system are conditioned on the transcription 
generated by Whisperflt

• E2E systems generate outputs only based on the audio input



Spoken GEC Conclusions

• For disfluency removal, Whisper outperforms a cascaded system

• For spoken GEC, Whisper shows comparable system performance to a 
fully cascaded system

• Feedback is more challenging
• Multiple, possibly inconsistent, decoding runs required to deive edits



Conclusions

• Whisper is a better ASR model than previous Kaldi model
• adaptation yields performance gains in SLA and more accurate 

transcriptions
• want to make it fast and use less computation → distillation
 

• Whisper can produce fluent spoken GEC output in E2E fashion
• Feedback more challenging as multiple decoding runs required

Foundation ASR models like Whisper have great potential in building 
language learning applications!



Questions?

Thank you for listening
Thanks to: Diane Nicholls and the Humannotator team at ELiT for the 
Linguaskill Speaking annotations. This presentation reports on research 
supported by Cambridge University Press & Assessment, a department of 
The Chancellor, Masters, and Scholars of the University of Cambridge.


