ByteDance

Abstract

- We propose a simple yet effective language model fusion approach to adapt ASR models to unseen domains.
- LMs, under both RNN-T and LAS ASR frameworks.
- maintaining good performance on the target domain.

Introduction and Motivation

Text-based Adaptation:

- Text data from the target domain is easy to collect.
- different domain adaptation settings.

Language Model Fusion:

► E2E ASR Model:

$$\hat{W} = rg\max_{W} \log p_{ heta}(W|X)$$

Shallow Fusion:

Internal Language Model Estimation (ILME) [1]:

► Motivation:

- across different domains during a session.
- We hope to achieve target domain adaptation without sacrificing the model performance on the general domain.

Internal Language Model Estimation based Adaptive Language Model Fusion for Domain Adaptation

Rao Ma, Xiaobo Wu, Jin Qiu, Yanan Qin, Haihua Xu, Peihao Wu, Zejun Ma ByteDance

ILME-based Adaptive Domain Adaptation

Table 1: Statistics for datasets utilised in the domain adaptation experiments.

$\log p_{ heta}^{ILM}(W)$
$\mathcal{N}),\lambda\log \mathcal{p}_{LM}(\mathcal{W}))]$

Test					
aracter (K)	duration (h)				
33.03	3.25				
287.05	22.83				
main adaptation experiments					

Perplexity (PPL) Results

Model		PPL (Search)		PPL (Medical)		
		Target	General	Target	General	
LM	NNLM	12.15	169.05	16.58	100.32	
	n-gram LM	34.47	239.86	24.61	148.13	
ILM	RNN-T	460.76	132.86	186.31	132.86	

Table 2: Perplexity results on the general and target domain test sets calculated by the external LMs and ILMs.

Comparison of Different Adaptation Methods

Model		Target	: Search	Target: Medical	
		Target	General	Target	General
Baseline	(no fusion)	21.88	13.89	4.47	13.89
	SF	14.89	28.55	3.43	14.56
NNLM	ILME	10.47	20.36	3.53	14.56
	ILME-ADA	13.35	14.81	3.53	14.25
N-gram	SF	15.08	17.49	3.62	15.56
	ILME	12.69	19.97	3.47	15.82
	ILME-ADA	11.72	15.35	3.44	14.03

Table 3: CERs (%) of adapted RNN-T models on the eBook search and medical domain test sets with the proposed ILME-ADA method. For each domain, an external NNLM and n-gram LM are trained with **ONLY** target domain text data.

Analysis

Dataset	
Target	

General

► **Cond.A** refers to $\lambda^{\text{ILM}} \log p_{\theta}^{\text{ILM}}(W) < \lambda \log p_{\text{LM}}(W)$. ► **Cond.B** refers to $\lambda^{\text{ILM}} \log p_{\theta}^{\text{ILM}}(W) >= \lambda \log p_{\text{LM}}(W)$. **Target: Search Target: Medical** Cond.B Cond.B Cond.A Cond.A 18.5% 81.5% 88.4% 11.6% 50.5% 49.5% 33.1% 66.9% Table 4: Percentage of tokens satisfying different conditions in ILME-ADA decoding

results on RNN-T with NNLM fusion.

References

[1] Meng, Zhong, et al. "Internal language model estimation for domain-adaptive end-to-end speech recognition", 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021.

ByteDance

External language model yields lower PPL on the target domain while ILM shows lower PPL on the general domain.

ILME-ADA largely improves ASR performance on the target domain while minimally influencing general domain performance.