N-best T5: Robust ASR Error Correction using Multiple Input Hypotheses and Constrained Decoding Space

UNIVERSITY OF CAMBRIDGE

Rao Ma, Mark J. F. Gales, Kate M. Knill, Mengjie Qian {rm2114,mjfg100,kmk1001,mq227}@eng.cam.ac.uk

ALTA Institute / Department of Engineering, University of Cambridge

1. Introduction

- Most error correction models use the 1-best ASR hypothesis as input and adopt beam search in the decoding.
 - context within one sentence does not provide enough information
 - ▷ the decoding process of the error correction model is not well-guided
- We propose to use the ASR N-best list as model input and testify several constrained decoding algorithms.

2. Discussion on ASR output

► 1-best vs. N-best list with beam search

5. Experiments

Experimental setup

- Data: LibriSpeech, audiobook reading
 - * Training set: 960hr, SpecAugment
 - \star Test sets: dev_clean, dev_other, test_clean, and test_other
- Conformer-Transducer ASR
 - \star Encoder: 12 Conformer layers with a hidden size of 512
 - ★ Predictor: 1 LSTM layer
- Error Correction Model
 - \star A pre-trained T5 base model
 - \star 6 Transformer blocks for encoder/decoder, hidden dimension: 768
- Oracle WER results in ASR outputs
- Word lattice produced in beam search with path merging
 merge partial hypotheses with the same N-gram context
 the path is removed from the active beam while kept in the lattice

3. N-best T5 Model Structure

- ► Based on a pre-trained T5 model.
- Concatenate the ASR N-best list, and insert a special token between different hypotheses to denote the sentence end.

<bos></bos>	come	and	pay	us	а	visit	<eos></eos>
-------------	------	-----	-----	----	---	-------	-------------

ACD Output	Dev		Test		
ASI Output	clean	other	clean	other	
5-best List	1.35	4.72	1.44	4.66	
10-best List	1.24	4.43	1.34	4.34	
Lattice	0.79	2.98	0.89	3.00	

ASR baseline and error correction results

Madal	Dev		Test		
IVIOUEI	clean	other	clean	other	
Baseline	2.71	6.99	2.88	7.06	
1-best T5	2.89	6.94	3.02	7.18	
5-best T5	2.62	6.40	2.77	6.67	
10-best T5	2.60	6.25	2.67	6.56	

Comparison of Decoding Algorithms

	Madal	Decoding Method	Dev		Test	
N	nouei		clean	other	clean	other
E	Baseline	_	2.71	6.99	2.88	7.06
		Unconstrained	2.62	6.40	2.77	6.67

4. Constrained Decoding in Inference

- Unconstrained Decoding
 - the error correction model is decoded with beam search in an unconstrained decoding space

- N-best Constrained Decoding
 - ▷ force the decoding result to appear in the ASR N-best list

ASR N-best Hypotheses	ASR Score	EC Score
come on pay the visit	-0.1	-1.0
come and pay a visit	-0.3	-0.8
come on pay us a visit	-0.4	-0.5

5-best T5N-best Constrained**2.38**6.252.556.38Lattice Constrained2.406.212.546.3410-best T5N-best Constrained2.396.172.546.31Lattice Constrained2.41**6.112.536.27**

▷ The effect of interpolation weight in the constrained decoding

- Lattice Constrained Decoding
 - ▷ force the decoding result to appear in the ASR lattice

This paper reports on research supported by Cambridge University Press & Assessment, a department of The Chancellor, Masters, and Scholars of the University of Cambridge. Mengjie Qian is supported by EPSRC Project EP/V006223/1 (Multimodal Video Search by Examples).

6. Conclusions

- The proposed error correction model consistently improves over the performance of a strong ASR model on the LibriSpeech test sets.
- The first to use ASR N-best list as input to PLMs and constrained decoding algorithms based on the output from E2E ASR models for error correction.

7. Reference

- [1] R. Ma, M. J. Gales, K. Knill, and M. Qian, "N-best T5: Robust ASR error correction using multiple input hypotheses and constrained decoding space", arXiv preprint arXiv:2303.00456, 2023.
- [2] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, "Exploring the limits of transfer learning with a unified text-to-text transformer," Journal of Machine Learning Research, 2020.